
<Insert Picture Here>

Coherence Product Features – Querying the Cache

Oracle Coherence Workshop

Copyright 2007 2

Agenda

• Introduction to the QueryMap Interface

• Using Query Criteria to return data

• Understanding Filters

• Aggregation of Data

• Using Indexes

• Q&A

Copyright 2007 3

Objectives

After completing this lesson, you should be able to:

• Describe the QueryMap interface

• Understand how to return a set of data given a query
criteria

• Describe the various filters available

• Understand how to aggregate data in a cache using
InvocableMap interface

• Understand how to apply an index to help aggregation
performance

Copyright 2007 4

<Insert Picture Here>

Querying and Aggregating

the Cache

Copyright 2007 5

Query of the Cache

• So far, we have only retrieved data by object ID
– myObject = NamedCache.get(id);

• What if we want do to things like:
– Queries other than by primary key, like this SQL statement:

• SELECT * FROM orders WHERE order_amount > 100

– Aggregations

• SELECT SUM(order_amount) FROM orders

– Queries with sorting

• SELECT id, name, order_amount FROM orders

WHERE open_status = 1 ORDER BY order_amount

Coherence doesn’t support SQL, but there are powerful

ways to query the cache!

Copyright 2007 6

QueryMap Interface

• Use com.tangosol.util.QueryMap interface to search
for Values or Keys

• Use Filters to restrict searching and thus results

• Filtering occurs at Cache Entry Owner
– ie: In Partitioned Topology, Primary Partitions do the filtering

• Use QueryMap interface to define Indexes to allow for
search optimization

• Create Continuous View of entries based on a Filter
with real-time events dispatch
– Perfect for client applications “watching” data

Copyright 2007 7

QueryMap Interface

Copyright 2007 8

QueryMap Interface - methods

• Set entrySet(Filter filter)

– Return a set view of the entries that satisfy the criteria expressed by
the filter.

• Set entrySet(Filter filter, Comparator comparator)

– As above but iteration over the set will occur in ascending ordered
according to the comparator.

• Set keySet(Filter filter)

– Return a set view of the keys contained in this map for entries that
satisfy the criteria expressed by the filter.

• void addIndex(ValueExtractor extractor, boolean fOrdered,
Comparator comparator)

– Add an index to a QueryMap.

• void removeIndex(ValueExtractor extractor)

– Remove an index from this QueryMap.

Copyright 2007 9

Example Object in Java

public class Trades implements ExternalizableLite{

private int id;

private String symbol;

private BigDecimal price;

public Person (…){}

public String getSymbol(){

return symbol;

}

public boolean isOpen(){

if (..) return true;

else return false; }

public BigDecimal getPrice(){

return price; }

}

We will perform a

query on these

methods

Copyright 2007 10

QueryMap Interface - Examples

• A set containing all of the open trades
NamedCache trades = CacheFactory.getCache(“trades”);

Set openTrades = trades.entrySet(new

EqualsFilter("isOpen", BOOLEAN.TRUE));

• A set containing trades that have the symbol ORCL:
Set stockORCL = trades.entrySet(new

LikeFilter("getSymbol", “ORCL%”));

• A set containing trades that have symbol ORCL and
are open
Set openKeys = people.keySet(

new AndFilter(

new LikeFilter(“getSymbol", “ORCL%”),

new EqualsFilter(“isOpen", BOOLEAN.TRUE)));

Copyright 2007 11

Indexes

• Each application using Coherence may suggest the
same set of indexes when it starts

• There is no downside to an application blindly
suggesting indexes regardless of whether another
application has already suggested the same indexes
– If an index has already been created, addIndex() is a no-op

• Indexes are maintained by Cache Entry Owners
– ie: For Partitioned Topology, the Primary Partitions maintain
their own indexes

• To sort entries (like an ORDER BY in SQL), specify
that the index is sorted

Copyright 2007 12

Indexes

Copyright 2007 13

Index Examples

• Suggest an index for trades based on their portfolio. Queries using
this index will be sorted (like an ORDER BY), and use natural
ordering (hence the null).
trades.addIndex(

new ReflectionExtractor(“getPortfolio”),

true, /*sort */

null); /* optional comparitor */

• Suggest an index for trades based on their market. Don’t use
ordering

trades.addIndex(

new ReflectionExtractor(“getMarket”),

false, /* do not sort */

null);

Copyright 2007 14

Features : InvocableMap Interface

• Execute processors against an Entry, a Collection or
a Filter

• Executions occur in parallel (aka: Grid-style)

• No “workers” to manage!

• Processors may return any value
trades.invoke(

new EqualsFilter(“getSecurity”,“ORCL”),
new StockSplit(2.0));

• Aggregate Entries based on a Filter
positions.aggregate(

new EqualsFilter(“getSecurity”,“ORCL”),
new SumFilter(“amount”));

Copyright 2007 15

Features : InvocableMap Interface

Copyright 2007 16

Entry Aggregators

• com.tangosol.util.InvocableMap.EntryAggregator are
agents that aggregate values from Entries
– Sum, Average, Count, Max, Min, Distinct, GroupBy, Having...\

• Equivalent to “agents” executing services in parallel
on the data in the cluster

• Aggregation...
– must not mutate Entries

– is for data extraction and aggregation only!

Copyright 2007 17

Entry Aggregators

• Object aggregate(Collection keys,
InvocableMap.EntryAggregator aggregator)

– Perform an aggregating operation against the entries
specified by the passed keys

• Object aggregate(Filter filter,
InvocableMap.EntryAggregator aggregator)

– Perform an aggregating operation against the set of entries
that are selected by the given Filter

Copyright 2007 18

Examples

• The total value of the open orders
BigDecimal result = orders.aggregate(

new EqualsFilter(“isOpen”, Boolean.True),

new BigDecimalSum(“getValue”));

• The categories of books on sale over $25
Set categories = stock.aggregate(

new AndFilter(

new EqualsFilter(“isOnSale”, Boolean.True),

new GreaterThenFilter(“getPrice”, 25)),

new DistinctValues(“getCategory”));

Copyright 2007 19

True/False Quiz

• 1) To run a parallel query on each node of the cluster,
your application needs to launch and manage worker
threads.

• FALSE. Coherence automatically performs

QueryMap and EntryAggregators in parallel.

• 2) Indexes improve the performance of queries.

• TRUE.

• 3) If you call addIndex() on an attribute that already
has an index, an exception is thrown.

• FALSE. It’s a no-op.

Copyright 2007 21

For More Information

http://search.oracle.com

or

http://www.oracle.com/products/middleware/coherence/index.html

Coherence

Copyright 2007 22

Q&A

Copyright 2007 23

Copyright 2007 24

